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Part 2: Seeing topology in the lab!

2015 Arnold Sommerfeld School, August-September 2015



Designing topological models by shaking atoms

* The basic concept:
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Loading atoms into topological bands




e Starting from a 2D optical square lattice : E(k) = —2J [cos(kd) + cos(kyd)]
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o Starting from a 2D optical square lattice : E(k) = —2J [cos(kzd) + cos(kyd)]
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* The Munich trick [Aidelsburger et al. Nature Phys. '15] : Nb of bands preserved !
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Anomalous velocity
and Chern-number measurements




The Berry curvature in a lattice system
e Consider a particle moving on a two-dimensional lattice:

® The eigenfunctions are Bloch waves
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e The eigenenergies are Bloch bands ’1"!/
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Topology of the nith Bloch band: 2— O, =1,€ Z | :Chern number of the band
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Bloch Oscillations and the Anomalous (Berry) Velocity
» Consider a particle moving on a 1D lattice and subjected to a constant force F’

* The semi-classical equations of motion for a wave packet centered around T and k. in a Bloch band E(]\T)

dx.(t) OE(k) . Ze (t)
dt - 1ok — Uband E(/)
ko ()= Ft/h

k Bloch oscillations 3



Bloch Oscillations and the Anomalous (Berry) Velocity
» Consider a particle moving on a 1D lattice and subjected to a constant force F’

® The semi-classical equations of motion for a wave packet centered around X, and kc in a Bloch band E(/x‘)

dx.(t) OE(k) _ ; Ze (1)
at = hok = Uband E(])
k. (t)= Ft/h
k Bloch oscillations t

« Consider a particle moving on a 2D lattice and subjected to a constant force F' = Fyly

* The averaged velocity in a state Uy,  is given by:

OE. (k) F, o
* = LA Ssz k : i
Un( ) ok, B ) ( ) anomalous (Berry) velocity
Uy (k) B OEn(k) Ref: Karplus & Luttinger 1954
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Isolate the Berry velocity? Populate all the states in nth band: E me/ld (k) — / Uband d*k =0
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Isolating the Berry velocity: Uniformly populating a single band

¢ Filled band of fermions ¢ Thermal gas
Es (k) E,
________________________ Ep
Whana < kT
Ey(k) Ey I §

p= Npart/Nstates =1 p= Npart /Nstates 7é 1



Isolating the Berry velocity: Uniformly populating a single band

¢ Filled band of fermions ¢ Thermal gas
Es (k) E,
________________________ Er
Whana < kT
Ey(k) Ey I §
p= Npart/Nstates =1 p= Npart /Nstates 7é 1

F, 1 2
o Let us compute the transverse velocity: Upp, = _#NpartAcell V] where Vi = o QY (k)d“k
™ JT2



Isolating the Berry velocity: Uniformly populating a single band

¢ Filled band of fermions

p = Npart/Nstates =1

" x _
e Let us compute the transverse velocity: Ugoy = —

e Thermal gas

Ey (k)

Es

£, 1 Whana < kT
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- Npart /Nstates 7é 1
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NpartAcell V1 where V] = —
2T

/ Q%(k)d*k
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* Link with the electrical Hall conductivity: jz = Ozy By where j; = evy, /Ayt and E, = Fy/e
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Filled bands of fermions: | oy = —
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—> integer quantum Hall effect

\_% von Klitzing 1980




The Thermal Bose Gas and the Center-of-Mass Drift

e Thermal Bose gas
E,  ° Thefilling factor: p = Npart /Nstates 7# 1
62
e The Hall conductivity: o0 = Fp vy where j, = oy F

Ey

Whana < kT



The Thermal Bose Gas and the Center-of-Mass Drift
e Thermal Bose gas
E,  ° Thefilling factor: p = Npart /Nstates # 1
62
e The Hall conductivity: o0 = Fp vy where j, = oy F
Fy

Ey ® The transverse velocity: 'U:Cot = _7NpartAcell 151
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The Thermal Bose Gas and the Center-of-Mass Drift
* Thermal Bose gas
By * The filling factor:  p = Npart /Natates 7 1
62
e The Hall conductivity: OH = %p vy where j, = oy Fy

F,
Ey * The transverse velocity: Up,, = *ﬁNpartAcell V1
Wheana < kT’
F, Acell
® The center-of-mass transverse velocity: Uf_m‘ = ’Utzot/Npart =__Y h 141 > ><

_ Fy Acell
h

o The center-of-mass drift: Az¢ . (t) = ti see A. Dauphin & NG PRL 2013

\> ‘ In-situ imaging can reveal the Chern number /1 ‘

K} ’ Measure the Chern number with ultracold bosons ‘




The Chern-number experiment in Munich

¢ The bosons are loaded into the lowest band

k}EH

* The optical gradient is added and the transverse drift is imaged in-situ
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Ref: Aidelsburger, Lohse, Schweizer, Atala, Barreiro, Nascimbene, Cooper, Bloch, Goldman, Nature Phys. 11, 162 (2015)



The Chern-number experiment in Munich

U3 vy =1

e The bosons are loaded into the lowest band o - .
By vy = —2
K) B vy =1
* The optical gradient is added and the transverse drift is imaged in-situ F
o
F,A
Azem (f) =~ 0
e Experimental data: z(t, ®) — z(t, —®) = 2z(t)
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The Chern-number experiment in Munich

* The bosons are loaded into the lowest band

kE1

* The optical gradient is added and the transverse drift is imaged in-situ
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o Experimental data: z(¢, ®) — z(t, —®) = 2z(t)
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Analyzing the data

e Short-time analysis: taking into account real initial band populations (about 60% in lowest band)

\>A$cm _ F:eellt{

F,A
vm + l/z% + V3773} = —chent 170

where Yo = 11 — 12 + 13

+ band-mapping data 7%, 5 = {0.55(6),0.31(3),0.13(3)} — > Vexp = 0.9(2)

Differential shift 2x(t/a
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Ref: Aidelsburger, Lohse, Schweizer, Atala, Barreiro, Nascimbene, Cooper, Bloch, Goldman, Nature Phys. 11, 162 (2015)



Analyzing the data

* Short-time analysis: taking into account real initial band populations (about 60% in lowest band)

F,A F,A
\>Axc.m(t) = —yTCC“t {1/1771 + 1/2%2 + 1/37]3} = —yTCC“t V170

where Y0 =11 — 12 +1)3

0

+ band-mapping data {55 = {0.55(6),0.31(3),0.13(3)} — > Vexp = 0.9(2)
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* Long-time analysis: taking into account band repopulation
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Seeing topological edge states with atoms




Bulk-Edge Correspondence in the Quantum Hall effect

Bulk analysis Edge-state analysis o =1/py =1 x (e?/h)

PH
Edge-states v chiral edge modes
p— e
: P
N, chern ) !

on a single edge




Bulk-Edge Correspondence in the Quantum Hall effect

Bulk analysis Edge-state analysis oy =1/py =V x (¢?/h)
@ "
Edge-states v chiral edge modes
— to
) 3
E —
N, chern

on a single edge

» Bulk-edge : the number of edge modes v is topologically protected

e2

v = Nchern UH:;V
» Edge modes are 1D Dirac fermions : E(ky) =~ vk,

» The edge states chirality (orientation of propagation) : sign(0E/9k,) = sign(v)



A quantum Hall device with cold atoms: what’s on the edge?

Cold atoms in optical lattices:

Goal: Isolating and seeing
emulating a QH insulator

the topological edge states

edge states

@ How to recognize the edge states?

@ They are chiral (“all go in the same direction”)
@ They are localized on the edge of the cloud
e Their dispersion relation is linear: E ~ vk

@ Main difficulty: many bulk states compared to only a very few edge states

@ Typically in a cloud: N=10.000 particles and about 10-100 edge states

@ How to isolate the signal stemming from the edge states?



Spectroscopy and atomic state manipulation

e Excite particles in the vicinity of the Fermi
energy, i.e., in a topological bulk gap

energy

bulk band
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edge states
bulk band
L angular momentum
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Spectroscopy and atomic state manipulation

e Excite particles in the vicinity of the Fermi e The probe:
energy, i.e., in a topological bulk gap two Laguerre-Gaussian beams
energy bulk band
I, w1 l2, w2
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Spectroscopy and atomic state manipulation

e Excite particles in the vicinity of the Fermi e The probe: e The Bragg spectrum:
energy, i.e., in a topological bulk gap two Laguerre-Gaussian beams revealing the dispersion relation
8
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Spectroscopy and atomic state manipulation

e Excite p;_irticl_es in the vic_inity of the Fermi e The probe: _ e The Bragg spectrum:
energy, i.e., in a topological bulk gap two Laguerre-Gaussian beams revealing the dispersion relation
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Probing the edge states after a quench : the bat geometry

a
external confinement
uItragoId + synthetic uniform
fermions magnetic flux
P P[P
D D P
O DD
repulsive walls
square optical lattice
b Equilibrium at t=0 (with walls) After walls removal

nge states dge states

edge states

NG, J. Dalibard, A. Dauphin, F. Gerbier, M. Lewenstein, P. Zoller, and I. B. Spielman, PNAS 110, 6736 (2013)



Dispersive vs dispersionless systems

ydge states
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Dynamics for the topological flat band regime

t =10n/J t=20n/J t = 30n/J
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The effects of smooth confinements : V() ~ (r/r¢)”
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Squeezing the cloud against the edge

t = 100h/.J
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Dynamics for the dispersive system

t=10n/J t=20n/J t = 30n/.J
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The opposite flux method for dispersive systems

a dp=p(x,t;®=+1/3) — p(x,t; & = —1/3)
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The edge-filter method for dispersive systems

I Vlﬁg ~ J/2 : bulk excluded from holes
at all times
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Some topics not discussed here
o Skyrmion-patterns in time-of-flight (Alba et al. PRL 11, Goldman et al. NJP ’13)

H(k) = e( Maxz + d( ) - & :two-band systems (e.g. Haldane model)
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Some topics not discussed here
o Skyrmion-patterns in time-of-flight (Alba et al. PRL '11, Goldman et al. NJP "13)

H(k) = e( Maxz + d( ) - & :two-band systems (e.g. Haldane model)

d 2
New = o7 / T2 a3 (akmdxak )dk:
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e Observation of chiral currents in optical ladders [see Part 3 and |. Bloch’s lecture]
e Zak phase measurement [see |. Bloch’s lecture]
e Berry curvature measurement through interferometry [see |. Bloch’s lecture]

e Thouless pump realization [see I. Bloch’s lecture]

Proposal to probe Majorana edge modes in atomic wires [Kraus et al. NJP "12,
Nascimbene JPB '13]
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